Deep Learning Approaches to Text Production
نویسندگان
چکیده
منابع مشابه
Named Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملEfficient Method Based on Combination of Deep Learning Models for Sentiment Analysis of Text
People's opinions about a specific concept are considered as one of the most important textual data that are available on the web. However, finding and monitoring web pages containing these comments and extracting valuable information from them is very difficult. In this regard, developing automatic sentiment analysis systems that can extract opinions and express their intellectual process has ...
متن کاملTeaching approaches to Computer Assisted Language Learning
Computers have been used for language teaching ever since the 1960's.Learning a second language is a challenging endeavor, and, for decades now, proponents of computer assisted language learning (CALL) have declared that help is on the horison. We investigate the suitability of deploying speech technology in computer based systems that can be used to teach foreign language skills. In this case,...
متن کاملDeep Learning Applied to Image and Text Matching
The ability to describe images with natural language sentences is the hallmark for image and language understanding. Such a system has wide ranging applications such as annotating images and using natural sentences to search for images. In this project we focus on the task of bidirectional image retrieval: such a system is capable of retrieving an image based on a sentence (image search) and re...
متن کاملDeep Neural Network for Learning to Rank Query-Text Pairs
This paper considers the problem of document ranking in information retrieval systems by Learning to Rank. We propose ConvRankNet combining a Siamese Convolutional Neural Network encoder and the RankNet ranking model which could be trained in an end-to-end fashion. We prove a general result justifying the linear test-time complexity of pairwise Learning to Rank approach. Experiments on the OHSU...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Synthesis Lectures on Human Language Technologies
سال: 2020
ISSN: 1947-4040,1947-4059
DOI: 10.2200/s00979ed1v01y201912hlt044